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Abstract

We propose a highly data-efficient active learning framework for image classifi-
cation. Our novel framework combines: (1) unsupervised representation learning
of a Convolutional Neural Network and (2) the Gaussian Process (GP) method,
in sequence to achieve highly data and label efficient classifications. Moreover,
both elements are less sensitive to the prevalent and challenging class imbalance
issue, thanks to the (1) feature learned without labels and (2) the Bayesian nature
of GP. The GP-provided uncertainty estimates enable active learning by ranking
samples based on the uncertainty and selectively labeling samples showing higher
uncertainty. We apply this novel combination to the severely imbalanced case of
COVID-19 chest X-ray classification and the Nerthus colonoscopy classification.
We demonstrate that only < 10% of the labeled data is needed to reach the accu-
racy from training all available labels. We also applied our model architecture and
proposed framework to a broader class of datasets with expected success.

1 Introduction

Medical imaging is one of the major applications of computer vision technologies. The applications
range from the most straightforward task of image classification (such as X-Ray, ultrasound, fundus)
to image segmentation (anatomy or legions), 3D imaging, and functional imaging (fMRI). Our focus
in this paper is image classification and its applications.

There has been significant progress in the past decade both in terms of theoretical insights and
classification accuracy due to the development and adoption of Deep Neural Network (DNN) models.
The most well-established approach is the supervised training of Convolutional Neural Networks
(CNN), which first identifies informative image features from multiple layers of convolutional filters
fed to a small number of classification layers that produce category decisions. However, this popular
approach typically requires large numbers of labeled images from each category to achieve an
accuracy level useful for medical diagnosis. Data collection and labeling are often very costly. In
some cases, it is not feasible to collect enough data for a quick automated diagnosis, as experienced
in the time-critical cases of the COVID-19 pandemic. This leads to a highly imbalanced class
distribution (“Normal" cases > “COVID-19" cases) that negatively impacts the decision accuracy.
Given these practical challenges, we depart from the standard approach and propose a highly data-
efficient methodology that can achieve the same level of accuracy using significantly fewer images
and labels. It is based on CNN unsupervised representation learning hybrid with a Gaussian Process
(GP) classifier. The GP-provided uncertainty estimates enable active learning by ranking unlabelled
samples and selectively labeling samples showing higher uncertainty.
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Figure 1: Our active learning framework is illustrated. The representation generator is trained
unsupervised with contrastive loss. The representations are used as inputs to the GP classifier. The
GP classifier is trained in the active learning loop until the target performance is reached.

2 Methodology

Active learning [14] is one of the most powerful techniques to improve data efficiency by saving
labeling efforts. Its primary goal is to use the minimum amount of labels to reach maximum
performance. We start with a small amount of labeled data (initial train set) to train the model. Then,
we use an acquisition function (often based on the prediction uncertainty or entropy) to evaluate the
unlabeled pool set, choose the most helpful pooling samples, and ask the external oracle (generally a
human) for the label. These newly labeled data are then added to the train set to update the model.
This process is repeated multiple times, with the train set gradually increasing in size until the
model performance (evaluate with the holding test set) reaches a particular stopping criterion. Active
learning will considerably facilitate real-world adoption of AI [T} (7} [35]}, especially in medical
imaging where data collection and labeling are quite expensive.

The CNN-GP hybrid model is trained in two decoupled steps, following the practical guidance
regarding the benefits of decoupling 33]]. We illustrate our training framework in Figure|[T]

The first step is the representation learning, which refers to an unsupervised training step with the
goal of extracting image features that are used in diverse downstream tasks. Among many different
approaches for this challenging task, the contrastive loss based learning has been applied very
successfully and shows state-of-the-art performance in classification [28] 3} [37, [8] 24].
Especially Chen et al. [10] confirms very high label-efficiency of the learned representation. These
results have clear implications to data imbalance problem: the learned features (1) do not overfit
dominant classes because the training does not use the class information (2) capture less dominant
classes more efficiently.

We start with a mini-batch with N = 16 image samples, image augmentation (random crop, random
flip, color distortion, Gaussian blur, and random gray-scale) is applied to each image twice to generate
an image pair, leading to total 2NV samples. The training maximizes the similarity of the positive pair
(the ones augmented from the same image), leveraging a contrastive loss. In SimCLR method [9} [10],
the contrastive loss is evaluated at the projection head layer after the ResNet-50 backbone.

The second step is the Gaussian Process (GP) classifier, a non-paramtric Bayesian method, that
can produce the prediction and its uncertainty in one shot. Many techniques have been developed to
extract Bayesian uncertainty estimates from DNN [13][16], and it was observed that the lower layers
of a DNN for images may not benefit as much from a Bayesian treatment [23]]. Similarly, GP has
been used at the top of DNNs and has been applied to both classification and regression problems
while producing uncertainty estimates [6, 4]]. However, it was observed that a DNN such as ResNet
efficiently learns CIFAR10 with a test accuracy of more than 96%, while kernel methods such as GP
can barely reach 80% [36]. It is well accepted [2]] that better representation input to the kernel is
crucial. The contrastive learning representation described above, which aims to aggregate points with
similarity measured by distance, will be the ideal input to a GP with a distance-based RBF (radial



basis function) kernel ﬂ This decoupled two-step training CNN-GP hybrid model framework, not
only alleviates the inline training issue of GP but also extracts a predetermined lower dimensional
feature space for the GP, so that the GP classifier shows accuracy advantage over the Bayesian linear
classifier, or the finite width non-linear neural network [27, 5]. The GP classifier also offers two
special properties that make it well-suited for medical image analysis: (1) As a Bayesian method, it
provides the prediction and its uncertainty in one-shot, which will greatly help medical diagnosis; (2)
Compared to other non-Bayesian methods, it handles the issue of class imbalance more effectively
[30], which is quite common in medical data.

Once we calculate the representations (2,048 dimensions for each sample) of all the train set, we use
them as the input to the GP classifier. To train the multi-class GP, we use the Sparse Variational GP
(SVGP) [19] from GPflow package [26]. We choose the RBF kernel with 128 inducing points. We
trained the model for 24 epochs using Adam optimizer with a learning rate of 0.001. The one-shot
output of the GP classifier include both the mean and variance of the class probability. We calculate
the mean variance of the class probability as prediction uncertainty for all the pool data and select the
next batch of images showing the largest uncertainties.

3 Experimental Results

3.1 COVID-19 Dataset and Active Learning Results

COVIDx dataset is the largest open ac-
cess benchmark dataset in terms of the
number of COVID-19 positive patient
cases to the best of our knowledge. At
the time of this study, it consisted of
15,521 chest X-ray images, of which
8,851 are “Normal", 6,063 “Pneumo-
nia" and 601 “COVID-19" pneumonia
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Figure 2: Test accuracy from active learning compared to datasets are: (1) COVID-19 Image
random selection for COVIDx dataset. The line and shaded Data Collection [13], (2) COVID-19
area show the mean and standard deviation of five runs. Chest X-ray Dataset Initiative [12] (3)
ActualMed COVID-19 Chest X-ray
Dataset Initiative [[11] (4) RSNA Pneumonia Detection Challenge Dataset, which is a collection of
publicly available X-rays [31] , and (5) COVID-19 Radiography Database [21]. The dataset is highly
imbalanced with significantly fewer COVID positive cases than other conditions: the train sample
(7966 “Normal" , 5469 “Pneumonia”, and 507 “COVID-19") and the test sample (885 “Normal", 594
“Pneumonia”, and 100 “COVID-19"). About 4% are COVID-19 positive cases in the train sample.

Before feeding data to the representation generator, we pre-process the images by performing a
15% top crop, re-centering, and resizing to the original image size to delete the embedded textual
information and enhance the region of interest [25] 34].

In Figure[2] we compare the CNN-GP hybrid active learning with the uncertainty acquisition function
(green) versus the same model but random selection (red), and the same SIMCLR backbone with
softmax layers model with random selection (blue) to show the benefit of both the active learning
and GP. We start with the same initial batch for a fair comparison. To check the consistency of our
results, we repeat multiple (five) random runs. The lines and shaded area shown in the figure are the
means and standard deviation of the five independent runs for random selection respectively. With
the unsupervised representation learning followed by a GP classifier, only ~ 10% of the training
data needs to be labeled to achieve the same accuracy as if all the labeled training data is used.
Especially when the sample size is small (< 20%), the training data selected by the acquisition
functions accelerates the model to reach significantly higher test accuracy. The remaining 90% of the
data offer no new information to the classification model and can be auto-labeled by the CNN-GP
hybrid model, saving considerable labeling cost.

*The RBF kernel is k(r) = o exp(—r?/21?), where 7 is the Euclidean distance between input vectors, [
length-scaler and o variance-scaler are two hyper-parameters.
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3.2 Nerthus Dataset and Active Learning Results

The Nerthus dataset [29] we use contains 5176

I [ o 1 ) 3] frar(rlles (l)f CO%OHOT%%I? images from 21 vigezs. We
- randomly select rames as test set and the rest
1:;:;? 4?'37 2?34 83637 142‘22 5000 as train and pool set. The class distribution
are depicted in Table 2] We can clearly see that

Table 2: Nerthus Dataset the Nerthus data is more balanced compared to the

Covid-19 data. We also perform necessary cleaning

to remove the unrelated tagging regions in the images before feeding into the deep learning model.

We perform same experiment for the
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Figure 3: Test accuracy from active learning compared to  that is the CNN-GP hybrid model is
random selection for Nerthus dataset. more stable and more accurate even

with the same CNN backbone.

4 Conclusion

We introduced a data-efficient CNN-GP hybrid model and showed that our approach enables an
efficient CNN-GP active learning with its application to the highly imbalanced COVID-19 chest
X-ray imaging and Nerthus colonoscopy images, leading to saving ~ 90% of the labeling time and
cost. Using the uncertainty generated from the GP model as acquisition function tends to select more
less represented class samples in the early stages of the active learning cycles.

We applied the proposed framework in several other datasets and reaches expected success as the
above two examples. Further improvement of the proposed framework is attainable through improved
unsupervised representation learning and implementation of better acquisition functions with stronger
exploration and exploitation characteristics. The aforementioned directions will be the focus of our
future studies.
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