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Abstract

Data can naturally be modeled using topological terms. Indeed, the field of topo-
logical data analysis fundamentally relies on the idea that the shape of data carries
important information that can be utilized to study and analyze the underlying
data. In this article, we define a topological framework of data in the context of
supervised classification using a neural network. We demonstrate that topological
considerations of the available data exclude certain architectures from being trained
to perform classification successfully.

1 Introduction

As machine learning practitioners are starting to realize the importance of understanding data used
to train models, mathematical notions of data must be revisited from points of view that are not
necessarily statistical. The purpose of this article is to introduce a topological perspective for data
in the context of neural network classifiers. Using this topological machinery, we show when the
classification problem is impossible for neural networks by considering the topology of the underlying
data. We also show how the architecture of a neural network cannot be chosen independently from the
data’s topology. To demonstrate these mechanisms, we provide an example dataset and demonstrate
the changes in topology that occur as it is acted upon by a neural network.

2 Previous Work

The earliest hints of which we are aware related to our work appear in a blog by C. Olah [10].
Olah performed a number of topological experiments illustrating the importance of considering the
topology of the underlying data when making a neural network. In [8], the activations of a binary
classification neural network were considered as point clouds upon which the layer functions of
the network act. The topologies of these activations were then studied using persistent homology
[2]. The authors Zeiler et. al. in [13] introduced a visualization technique that gives insight into
the intermediate layers of convolutional neural networks. The authors in [12] also provide ways to
visualize and interpret a given convolutional network by looking at filter activations.

3 Background

A neural network, or simply a network, is a function Net ∶ Rdin Ð→ Rdout defined by a composition
of the form: Net ∶= fL ○ ⋯ ○ f1 where the functions fi, 1 ≤ i ≤ L are called the layer functions.
A layer function fi ∶ Rni Ð→ Rmi is typically a continuous, piece-wise smooth function of the
following form: fi(x) = σ(Wi(x) + bi) where Wi is an mi × ni matrix, bi is a vector in Rmi , and
σ ∶ RÐ→ R is an appropriately chosen nonlinear function that is applied coordinate-wise on an input
vector (z1, . . . , zmi) to get a vector (σ(z1), . . . , σ(zmi)).
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4 Data In a Topological Setting

The purpose of this section is define data using the language of topology.

4.1 Topological Data

We use Mn to refer to a manifold M of dimension n. Let D = M i1
1 ⊍M i2

2 ⋯ ⊍M ik
k be a disjoint

union of k compact manifolds. Let h ∶D Ð→ E be a continuous function on D. We refer to the pair
(D,h) as topological data and refer to E as the the ambient space of the topological data, or simply
the ambient space of the data. See Fig 1 for an illustration.

The space E, usually some Euclidean space, represents the ambient space of a probability distribution
µ from which we sample the data. The support of µ is D ∶= h(D). The assumption that the data lives
on a manifold-like structure is justified in the literature [3, 6].1

4.2 Topologically Labeled Data

Let (D,h) be topological data with h ∶D → D ⊂ E. Let Y = {l1, . . . , ld} be a finite set. A topological
labeling on D is a closed subset DL ⊂ D along with a surjective continuous function g ∶ DL → Y
where Y is given the discrete topology. The triplet (D,h,g) will be called topologically labeled data.

Topologically labeled data corresponds to labeled data in the typical statistical setting for a supervised
classification machine learning problem. Specifically, here we think of each set Dk ∶= g−1(lk) ⊂ D as
the support of the distribution of points inside D which have particular label lk. Moreover, d is the
number of labels in the dataset in the statistical setting.

5 The Topological Classification Problem

Figure 1: Illustration of Definition 1. A topo-
logical classifier separates the data by send-
ing each labeled part to a different and easily
separably regions of the classifier’s codomain.

With the above setting we now demonstrate how to
realize the classification problem as a topological
one. In what follows we set Dk to denote g−1(lk) for
lk ∈ Y .

Definition 1. Let (D,h, g) be topologically labeled
data with, h ∶ D → D ⊂ Rn and g ∶ DL ⊂ Rn → Y
where ∣Y∣ = d. A topological classifier on (D,h,g)
is a continuous function f ∶ Rn → Rk. We say that
f separates the topologically labeled data (D,h,g)
if we can find d disjoint embedded k-dimensional
discs A1, . . . ,Ad in Rk such that f(Dk) ⊂ Ak, for
1 ≤ k ≤ d. See Fig 1 for an illustration.

In general, a topologically labeled data can be knotted, linked and entangled together in a non-trivial
manner by the embedding h, and the existence of a function f that separates this data is not immediate.
The preceding description is a topological framing of the classification problem typically given in a
statistical setting. Indeed, a successful classifier tries to separate the labeled data by mapping the raw
input data into another space where this data can be separated easily according to the given class.

The function f is the learning function that we try to compute, in practice. The first question one
could ask in this context is one of existence: given topologically labeled data (D,h, g) when can we
find a function f that separates this data? We answer this question next.

5.1 Topological Classifiers and Separability of Topologically Labeled Data

We start with the binary classification problem, namely when ∣Y∣ = 2. We have the following
proposition:

Proposition 5.1. Let (D,h, g) by a topologically labeled data with h ∶D Ð→ D ⊂ Rn and g ∶ DL →
{l1, l2}. Then there exists a topological classifier f ∶ Rn → R that separates (D,h,g).

1While we make this assumption here, it not strictly necessary anywhere in our proofs.

2



Proof. By definition, label function g ∶ DL Ð→ {l1, l2} induces a partition on DL into two dis-
joint closed sets D1 ∶= g−1(l1) and D2 ∶= g−1(l2). By Urysohn’s lemma there exists a function
f∗ ∶ D Ð→ [0,1] such that f∗(D1) = 0 and f∗(D2) = 1. Since D is closed in Rn then by Tietze
extension theorem there exists an extension of f∗ to a continuous function f ∶ Rn → R such that
f∗(D) = f(D). In particular, f(D1) = 0 and f(D2) = 1. Hence the function f separates (D,h, g).

Proposition 5.1 can be easily generalized to obtain functions that separate (D,h,g) in any Euclidean
space Rk. Namely, for any k ≥ 1 there exists a continuous map F ∶ Rn Ð→ Rk that separates
(D,h,g). This can be done by defining F = (f1, f2) where f1 ∶ Rn Ð→ [0,1] is the continuous
function guaranteed by Urysohn’s Lemma and f2 ∶ Rn Ð→ Rk−1 is an arbitrary continuous function.
This function F clearly separates (X,h,g). We record this fact in the following proposition.

Proposition 5.2. Let (D,h,g) by a topologically labeled data with h ∶ D → D ⊂ Rn and
g ∶ DL → {l1, l2}. Then for any k ≥ 1 there exists a continuous map f ∶ Rn → Rk that separates
(D,h, g).

Proposition 5.2 can be generalized to the case when the set Y has an arbitrary finite size. This can
be done by because Urysohn’s Lemma remains valid when we start with n disjoint sets instead of 2.
The following theorem, which generalizes 5.2, asserts the existence of a topological classifier f that
separates any given topologically labeled data.

Theorem 5.3. Let (D,h, g) be topologically labeled data with h ∶ D → D ⊂ Rn and g ∶ DL → Y .
Then there exists a continuous map f ∶ Rn → Rk that separates (D,h, g) for any integer k ≥ 1.

6 Neural Networks as Topological Classifiers

Let (D,h, g) by a topologically labeled data with, h ∶ D → D ⊂ Rn and g ∶ DL → Y = {l1, . . . , ld}.
Can we find a neural network defined on Rn that separates the data (D,h, g) ? We start by framing
the softmax classification networks using topological terminologies.

Typically, classification neural networks have a special layer function at the end where one uses
the softmax activation function.2 Denote by ∆d the dth simplex as the convex hull of the vertices
{v0, . . . , vn} where vi = (0, . . . ,1, . . . ,0) ∈ Rd+1 with the lone 1 in the (i + 1)th coordinate.

Denote by Int(A) denotes the interior of a set A. The softmax function on d vertices softmax ∶
Rd Ð→ Int(∆d−1) ⊂ Rd, is defined by the composition S ○ Exp where Exp ∶ Rd → (R+)d
is defined by : Exp(x1, . . . , xd) = (exp(x1), . . . , exp(xd)), and S ∶ Rd → ∆d−1 is defined by:
S(x1, . . . ,xd) = (x1/∑d

i=1 xi, . . . , xd/∑d
i=1 xi).

A network Net is said to be a softmax classification neural network with d labels if the final layer
of Net is softmax function with d vertices. Usually d is the number of labels in the classification
problem. Each vertex vi in ∆d−1 corresponds to precisely one label li+1 ∈ Y for 0 ≤ i ≤ d − 1.

For an input x ∈ D the point Net(x) is an element of ∆d−1. By definition, the point x is assigned to
the label li+1 by the neural network if and only if Net(x) ∈ Int(V C(vi)) where V C(C) denotes
the Voronoi cell of the set C. This immediately yields the following theorem.

Theorem 6.1. Let (D,h, g) by a topologically labeled data with, h ∶ D → D ⊂ Rn and
g ∶ DL ⊂ Rn → {l1, . . . ld}. A softmax classification neural network Net ∶ Rn → Int(∆d−1) sepa-
rates (D,h, g) if and only if Net(Di+1) ⊂ Int(V C(vi)) for 0 ≤ i ≤ d − 1.

Finally, to answer the question about the ability of a neural network to separate a topologically labeled
data, we combine the result we obtained from Theorem 5.3 with the universality of neural networks
[1, 4, 7].3 The universality of neural networks essentially states that for any continuous function f
we can find a network that approximates it to an arbitrary precision.4 Hence we conclude that any
topologically labeled data can effectively be separated by a neural network.

2There are other types of classification neural networks but this is beyond the scope of our discussion here.
3The universal approximation theorem is available in many flavors: one may fix the depth of the network and

vary the width or the other way around.
4The closeness between functions is with respect to an appropriate functional norm. See [1, 7] for more

details.
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7 Shape of Data and Neural Networks

We end our discussion by briefly showing how the shape of input data is essential when deciding
on the architecture of the neural network. Theorem 7.1 shows that if we are not careful about the
choice of the first layer function of a network then we can always find a topologically labeled data
that cannot be separated by this network. This shows that the neural networks architecture must
be in general a function of the underlying training dataset.

Theorem 7.1. Let Net be neural network of the form: Net = Net1 ○ f1 with f1 ∶ Rn Ð→ Rk such
that f1(x) = σ(W (x) + b) and k < n and Net1 ∶ Rk Ð→ Rd is an arbitrary net. Then there exists
a topologically labeled data (D,h, g) with h ∶ D → D ⊂ Rn and g ∶ DL ⊂ D → Rd that is not
separable by Net.

Proof. Let D = D = {x ∈ Rn, ∣∣x∣∣ ≤ 2}. Let DL = D1 ⊍ D2 where D1 = {x ∈ Rn, ∣∣x∣∣ ≤ 0.9} and
D2 = {x ∈ Rn,1 ≤ ∣∣x∣∣ ≤ 2}. Choose g ∶ DL Ð→ {l1,l2} such that g(D1) = l1 and g(D2) = l2. Let f1
be a function as defined in the Theorem. The matrix W ∶ Rn Ð→ Rk where k < n has a nontrivial
kernel. Hence, there is a non-trivial vector v ∈ Rn such that W (v) = 0. Choose a point p1 ∈ D1

and a point p2 ∈ D2 on the line that passes through the origin and has the direction of v. We obtain
W (p1) = W (p2) = 0. In other words, f1(p1) = f1(p2). Hence Net(p1) = Net(p2) and hence
Net(D1)∩Net(D2) ≠ ∅ and so we cannot find two embedded disks that separate the sets Net(D1),
Net(D2).

3 → 7 7 → 7

7 → 7 7 → 3 3 → 2

𝑓1 𝑓2

𝑓3
𝑓4 𝑓5

Figure 2: Unlinking the data using a neural net.

Note that in Theorem 7.1,
the statement is indepen-
dent of the depth of the neu-
ral network. This is also re-
lated to the work [5] which
shows that skinny neural
networks are not universal
approximators. This is also
related to the work in [9]
where is was shown that
a network has to be wide
enough in order to success-
fully classify the input data. In fact, Theorem 7.1 can be extended to the case when k = n. Consider
the dataset given in left upper corner of Fig 2. We argue that this data cannot be unlinked if every
layer of a neural networks that acts on this data is chosen to go from R3 to R3. To see this first observe
that any linear matrix W in a given layer, if it is not a projection, can be realized as an isotopy and
possibly a reflection. Both of these continuous functions preserve link type (i.e. maintains the linking
topological property). Furthermore the RELU non-linearity acts as a deformation retract which
also does not change the link type. Hence the only way to untangle this dataset is to go to higher
dimensions. Similar knotting and linking phenomenon can be constructed in higher dimensional
spaces. This shows that a neural networks architecture must not be chosen independently without
considering the nature of data.

On the other hand, the same dataset can be unlinked easily if we send the dataset to a higher
dimension space. Consider for instance the network Net ∶ R3 Ð→ R2 defined by the composition
Net = f5 ○ f4 ○ f3 ○ f2 ○ f1 where f1 ∶ R3 Ð→ R7, f2 ∶ R7 Ð→ R7, f3 ∶ R7 Ð→ R7, f4 ∶ R7 Ð→ R3

and f5 ∶ R3 Ð→ R2. The activations are described in Figure 2.

Note that this network unlinks the input two tori provided we send this data to a higher dimension
and allow enough steps ( in terms of number of layers ) for this unlinking to occur. Moreover, to
visualize the higher dimensional activations in Figure 2 we project them to R3 using Isomap [11].
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