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Abstract

Missing values exist in nearly all clinical studies because data for a variable or
question are not collected or not available. Imputing missing values and augmenting
data can significantly improve generalisation and avoid bias in machine learning
models. We propose a Hybrid Bayesian inference using Hamiltonian Monte Carlo
(F-HMC) as a more practical approach to process cross-dimensional relations by
applying a random walk and Hamiltonian dynamics to adapt posterior distribution
and generate large-scale samples. The proposed method is applied to cancer
symptom assessment, and MNIST datasets confirmed to enrich data quality in
precision, accuracy, recall, F1-score, and propensity metric.

1 Intoduction

Many large datasets are inherently uncertain due to noise, incompleteness, inconsistency, and lack
of a sufficient number of training samples, which significantly impact the outcomes of the machine
learning techniques by misleading or biasing the final results. Using augmentation and imputation [3]]
methods can improve data quality. However, they usually suffer from bias caused by dropping cases
or replacing data with seemingly suitable values. Bayesian inference with Hamiltonian Monte Carlo
offers a very efficient way to process high-dimensional and small sample datasets. In this paper, we
apply our proposed model to the MNIST dataset and a dataset collected from 1342 cancer patients
symptoms during chemotherapy by a team in the School of the Nursing University of California
(USCBH[1].

2 Related Work

Sampler methods such as Gibbs and MCMC to estimate parameters of interest under missing values
are the closest techniques to our proposed model [4, 2]]. They are based on setting a fixed parameter
and require more computation time, particularly for large sample size studies. The proposed approach
opens a new window of using samplers to estimate missing values directly instead of estimating the
model parameters. In particular, this method will enrich the sampler to explore high dimensional data
for estimating missing values while the generated samples preserve data privacy. More details of the
model are presented in the Method section.

3 Method

The Bayesian approach provides a framework for making inferences with incomplete data by con-
sidering the full-data model as the posterior. Let Y = (Y;;) denote a rectangular data set where ¢
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is the data sample, and j is variables’ features. Let’s partition Y into observed and missing values,

Y = (Y°"Y™%). Let M be as the mask vector which indicates observed components in Y;; is
defined as:

Mo — 1, Y;; missing .

‘ 0, Y;; observed.

One can specify the full-data response by calculating the joint model where w is an unknown
parameter which consists of ¢ and ¢. Then the joint model (likelihood) of the full data is

p(KM\Q,gb) :p(YObsvymiva|6‘7¢) )

(1)

The joint model in Eq. [2cannot be evaluated in the usual way because it depends on missing data.
However, the marginal distribution of the observed data can be obtained by integrating out the
missing data. Consequently, the joint model can be written as follows after applying the conditional
independence assumption and selection model factorisation:

P 0010,6) = [ o™y o,y = [ pOIIY Y 0y Y )y
3)

By estimating the integral in Eq. |3} one can determine full data response and consequently generate
new samples to utilise for data imputation and augmentation. We show that Monte Carlo samplers,
especially F-HMC samplers, are an effective method for the Eq. [3|estimation in high-dimensional
data.

3.1 F-HMC Algorithm for Imputation and Augmentation

We consider the problem formulation as a d-dimensional space that X = (X1, ..., X4) is a random
variable selected from it. We consider M = (M, ..., M) as a mask vector which identifies the
missing values in the dataset D as defined in the equation 1} We also define dataset D = {(x%,m?)},
where m’ is the obtained realisation of M corresponding to z;. Our goal is to impute the unobserved
values in each z°.

Given a dataset D and a mask vector M, each missing data considered as an unknown parameter
which their possible values are drawn and directed to 57 (— log(P(X|D)), i.e. the potential energy
in Hamiltonian Monte Carlo semantic. HMC first models the posterior distribution of each feature
dimension of data using the Gaussian likelihoods with a Laplacian prior, to find the mu and sigmas
of feature distribution. Then, all the mu and sigmas for each feature dimension are given to another
HMC (fold) with respect to the cross-correlation between all features. The F-HMC adopts the results
using gradient information to draw samples from the cross-dimensional distribution of features. After
a burn-in time, the algorithm converges, and it can generate samples that belong to the posterior of the
complete dataset. For imputation, the missing values are replaced by marginalisation over generated
samples correspond to that missing part. Algorithm [3.1|presents the steps in our approach, where D
is the incomplete dataset, M is the mask vector to indicate missing values in D, 7 is the step size for
HMC dynamics, and k is the number of generated samples of the full dataset.
Input: D, M, k,n
Output : X! X2 X3 .. XK
Initialisation : X°
fori < 1tok do
Xo«+ X k=1
mug, sigmag < HMC for each
T1,T3,...,Tq separately;
MU, SIG < joint mug, sigmag
Xp—1 — HMC(mug, sigmag,n)
Xp— X1 OM
X k — X
end for

After initialisation of X with white noise, the algorithm starts. First HMC iterates in parallel over
each feature dimension of D to calculate mug4, sigma,, separately. Next, it produces new MU
and SIG by concatenating the mug, sigmag which allows the cross-correlation of features to be
considered in the learning. Then MU and SIG are given to the second HMC sampler to explore
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techniques; KNN, MICE, missForest, and on data imputation performance using the
the F-HMC on MNIST dataset proposed approach on MNIST

Figure 1: NRMSE results on the MNIST. the lower score shows higher data quality
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Figure 2: Classification performance of various
machine learning techniques on an imputed ver-
sion of the USCF data after applying KNN, PPCA,
F-HMC, MICE. A higher score indicates a more
reliable imputation method.

Figure 3: Comparing propensity score in data
augmentation on the USCF dataset as a metric to
evaluate the quality of synthesised data. A lower
score indicates higher quality.

the posterior and return samples from that posterior. Operator & is for marginalising generated
samples over missing values with the help of matrix M. The algorithm keeps a record of the latest
state of outputs for the next round to make it more accurate over time. The outputs of the algorithm
X' X2, ..., X" are the complete datasets drawn from the estimated posterior. The algorithm can
impute missing values and generate more samples from posterior, in case of requiring more samples
from the data.

4 Experiments and Evaluations

To evaluate the proposed method’s performance in data imputation and augmentation, we have
intended three measurement levels: Distance metric such as Normalised Root Mean Square Error
(NRMSE) (suitable for scenarios where missing values are dropped randomly and true values exist).
Outcome performances on classification (where we do not grand truth to indicate the actual value
of missing data). Propensity metrics as a quality measure of augmentation performance.

4.1 MNIST Data

MNIST dataset containing 60k images of handwritten digits of 28#28 pixels is chosen to evaluate we
consider each pixel as a feature dimension, and missing pixels are dropped randomly and reconstructed
using our proposed and baseline methods. The proposed model outperforms in terms of NRMSE
as shown in figure [Ta] Comparisons on using various samplers in our proposed model is shown in

Figure[TD].
4.2 The Cancer Symptom Management Dataset (USCF Dataset)

In the UCSF dataset, we are not aware of the value of missing parts, so the evaluation is done based
on the classification performance after applying imputation and augmentation techniques. More
improvement over classification stands for higher enrichment in data quality, hence a more reliable
imputation technique. Figure [2]shows that the predicted precision in the data imputed by the proposed
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Figure 5: Reproducibility of classification performance on original and synthetic USCF data using
the proposed approach after applying various classification models. For instance, Logistic Regression
has higher accuracy than nearest neighbour in both original and augmented data. Kernel SVM recall
is less than recall in the decision tree on original data that agrees with the same results on synthetic
data

approach is higher than the baseline methods and confirms that imputation using the F-HMC is more
substantial than baselines. The propensity score is the probability of a given data point being assigned
to a particular class. As Figure[3|shows, the synthetic data generated by the F-HMC approach has the
lowest propensity score meaning the higher quality of data. It is expected that certain ML methods
perform similarly on both original and augmented data considering uncertainty. We judged the
performance based on the accuracy, precision, recall, and F1 score of data classification on each
cancer type reported in macro-averaging as shown in Figure 5]

5 Conclusion

This work proposes a Hybrid Bayesian inference using Hamiltonian Monte Carlo (F-HMC) to impute
missing values and generate augmented samples in high dimensional but small healthcare datasets.
We demonstrate that the proposed method effectively augment data samples and impute missing
values in terms of Metric distance (NRMSE), classification score impact (accuracy, recall, precision
and precision F1-score) and propensity score on MNIST and a clinical dataset on cancer symptom
management.
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