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Abstract

Autism Spectrum Disorders (ASDs) are neurodevelopmental disorders which in-
hibits linguistic, cognitive, communication and social skills of affected individuals.
Currently, ASD is diagnosed by means of time-consuming and expensive screening
tests. Hence, Machine Learning (ML) techniques have been applied to construct
predictive models able to diagnose autism at early stages. However, the binary
setting (ASD vs not-ASD) and the not-exciting performance reached by such mod-
els highlight the need for further de-identified datasets and interdisciplinary work
linking computer scientists and Subject Domain Experts (SDEs). In this work,
we propose a novel dataset in which labels refer to the severity level of autism as
required by the Diagnostic and Statistical Manual of Mental Disorders (DSM-5)
standard reference. Then we analyze the quality of resulting ML models (i.e.
Random Forest, XGBoost, Neural Network) based not only on their performance
metrics (i.e. precision, recall, F1) but also on the most important features they
consider for classification and their similarity with the ones suggested by the SDE.

1 Introduction

According to the Diagnostic and Statistical Manual of Mental Disorders, 5th Edition (DSM-5) (1),
Autism Spectrum Disorders (ASDs) are neurodevelopmental conditions which affect communication
and behavior and are characterized by impairment of communication and social interaction and by
repetitive, restricted and stereotyped interests. The prevalence has increased exponentially in the last
few years: most recent estimates suggest a prevalence of 1 in 59 among 8-year-old children from the
USA (2). Both genetic and environmental factors can contribute to the pathogenesis, but the etiology
is still unknown. To date, ASD is clinically diagnosed by means of behavior-based tests which are
costly and time-consuming (3). Hence, the automation of the diagnosis by means of ML approaches
would be a great advance in this healthcare field.

Wall et al. (4) are the firsts to apply Machine Learning (ML) approaches for ASD diagnosis. On
paper, their results were extremely promising: they obtained 100% accuracy and sensitivity by using
only 8 out of the 29 original features. Similarly, Wall et al. (5) show that 7 of the 93 answers resulting
from the Autism Diagnostic Interview-Revised (ADI-R) were sufficient to classify autism with 99.9%
accuracy. However, a subsequent research work from Bone et al. (6) has shown the problems of the
above-mentioned works: models were trained on highly unbalanced data and test instances did not
contain any negative sample, and test instances were simulated by picking samples from the training
set to deal with the lack of data. As a consequence, the absence of clinical domain expertise led
to erroneous conclusions, since all the discarded were necessary to obtain a reliable autism score.
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Results obtained in recent literature are not exciting (7; 8) and thus suggest the need for additional
efforts in this field to use ML models in the actual practice of medicine.

In addition to all of the above, most of the research works focus on a binary classification task (9), i.e.
ASD vs non-ASD classification, and ignore the numerous facets of ASD which can be decomposed
in different classes. However, ASDs are very heterogeneous conditions and symptoms vary widely
from subject to subject, hence the term "spectrum". Therefore, according to DSM-5 criteria, clinical
severity levels — based on social communication impairments and restricted and repetitive behavioral
patterns — can be identified as follows:

• Level 1: requiring support. difficulties and possible decreasing interest in social interactions;
inflexibility of behavior, difficulties in switching between activities, problems in planning
and organizing.

• Level 2: requiring substantial support. Impairments in verbal and non-verbal communication
skills evident also with supports in place; inflexibility of behavior, difficulty coping with
change, evident and interfering restricted/repetitive behaviors, difficulty changing focus or
action.

• Level 3: requiring very substantial support. Severe communication deficits; inflexibility of
behavior and extreme difficulties in restricted/repetitive behaviors, great difficulty changing
focus or action.

The binary problem simplification can surely lead to higher levels of sensitivity and specificity, but
the resulting ML models are not useful in the actual practice of medicine, where there is a grey area
and patients with different levels of disease should receive different treatments.

To sum up, the primary objective of previous studies was to ease physicians in the screening process
of patients, thus focusing on performance metrics such as accuracy, specificity and sensitivity, even
at the expense of discarding features which could have brought to useful insights (4; 5; 10). The
analysis of the current literature in the application of ML techniques to ASD diagnosis reveals the
need for a strengthened cooperation between clinical and computational researchers, which could
lead to useful insights which can actually improve the clinical processes.

In this work, according to the guidance of a Subject Domain Expert (SDE), we publicly release
Autism Spectrum Disorder - Severity Levels (ASD-SL), a multi-class ASD dataset which is compliant
with DSM-5 criteria1. Furthermore, not only do we analyze the quality of resulting ML models with
quantitative performance metrics (precision, recall and F1 scores), but we also use SHAP (11) to
compute the importance assigned by each model to each feature and compare the results with the
knowledge and experience of the SDE.

2 ASD-SL Dataset

We collected anonymized data from a consecutive sample of children referred to Department of
Pediatrics - Unit of Child and Adolescent Neuropsychiatry, University Federico II of Naples, for
an evaluation in a clinical suspicion of ASD. About 141 individuals (76,5% males), aged between
18 to 156 months, received a full assessment, including historical information, structured clinical
interviews and validated observations. Autism Diagnostic Observation Schedule-2 (ADOS-2) was
performed by a licensed clinician both to confirm diagnosis and to evaluate level of symptoms
according to comparative score. To determine the development/intellective level, Griffiths Mental
Development Scale (GMDS-ER) or Leiter International Performance Test-Revised (Leiter-R) were
administered. To establish adaptive competence of all patients, parents were interviewed by Vineland
Adaptive Behavior Scales – II edition (VABS-II). Diagnosis of ASD was formulated according to
DSM-5. We classified all the specifiers useful to determine the severity level of ASD according to
the DSM-5 diagnostic criteria: "With/without accompanying language impairment"; "With/without
accompanying intellectual impairment". We integrate data about environmental factors, genetic
factors, cognitive/social/language impairments and useful measures which are usually leveraged to
diagnose ASD:

• Intellective Quotient (IQ)/Developmental Quotient(DQ): usually measured by means of
intelligence or developmental tests (e.g. Wechsler scales, Leiter international performance

1https://picuslab.dieti.unina.it/index.php/asd-sl
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Table 1: Dataset features
Feature Description Type # missing
age_months numbers indicating the age

and gender of patients
int 37

gender binary 0

pregnancy_problems
flags indicating
environmental factors

binary 39
normally_evolved_perinatal_phenomena binary 39
birth_anomalies binary 47
psychiatric_disorders_familiarity binary 0

QS (developmental age)

useful measures (see Section 2)

int 43
IQ float 109
DQ float 71
DQ_IQ float 39
QA_VABS int 4
ADOS int 5

I_intellective_impairment

specifiers of impairments
and comorbidities

binary 118
II_language_impairment binary 46
III_known_medical_condition binary 56
III_history_environmental_exposure binary 54
IV_other_mental_behavioral_disorders binary 55
other_psychiatric_comorbidities binary 70
nutrition_disorders binary 17

CGH_array_alterations

genetic factors

binary 45
n_alterated_chromosomes int 45
n_mutations int 45
n_dup int 45
n_del int 45

scale, Griffiths III Mental Development scales), they provide indications on the presence
(and the level) of an intellectual/developmental impairments. Determining this value allows
to determine the ASD specifier "With/without associated intellectual impairment".

• Adaptive Quotient (QA): it indicates the level of "adaptive behavior", i.e. how effectively a
person copes with common life demands and how well they meet the standards of personal
independence expected of someone in their particular age group, socio-cultural background
and community setting.

• Autism Diagnostic Observation Schedule (ADOS): it measures the responses to standard,
social, planned activities (stimuli) that favor communication skills and social interaction.
This instrument is the gold standard to confirm ASD diagnosis and it allows to evaluate level
of symptoms according to comparative score (ranging from 0 to 10).

Table 1 shows an overview of the complete set of features, with their description, type and the number
of missing values.

3 Quality Analysis

In healthcare projects, the standard ML pipeline (data collection - modeling - error analysis) has to be
enriched with an interface which allows SDEs to understand the inner mechanisms of ML models. In
this perspective, not only do we quantitatively evaluate the performance of three different ML models,
but we also compare their SHAP explanations to the ones provided by the SDE.

We trained three different ML models: Random Forest, XGBoost and a neural network. We test their
performance with a 10-fold cross-validation and choose the best hyper-parameters for each fold with
a 10-fold randomized search. Table 2 reports the results in terms of precision, recall and F1 scores.
The high variability of performance highlights the need for further analyses to establish the quality of
models.
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Table 2: Training results.
Level Model Precision Recall F1

1
Random Forest 55.00 ±47.17 46.67± 42.03 48.00± 40.86

XGBoost 65.83± 36.60 65.00± 32.02 60.00± 28.09
Neural Network 55.83± 32.50 65.83± 36.60 54.67± 28.84

2
Random Forest 63.57± 23.64 79.79± 16.94 68.35± 20.92

XGBoost 64.31± 23.47 77.17± 13.24 67.13± 18.69
Neural Network 66.64± 25.35 67.89± 18.13 63.60± 19.97

3
Random Forest 73.17± 12.94 66.44± 14.60 67.93± 07.72

XGBoost 67.83± 23.29 56.06± 23.07 56.99± 20.67
Neural Network 55.50± 29.21 53.23± 30.02 51.44± 25.95

Table 3: Global importance rankings
Feature SDE Random Forest XGBoost Neural Network

QA_VABS 1 6 7 3
QS 2/3/4 7 11 4
IQ 2/3/4 21 22 18

DQ_IQ 2/3/4 20 15 5
ADOS 5 1 2 1

SDE RF XGB NN

SDE

RF

XGB

NN

Figure 1: Rank distances

We asked a SDE to rank the most useful features he would consider when diagnosing the level
of ASD. He answered by highlighting three levels of importance and five features: (1) first of all,
the QA_VABS value is of primary importance, since the severity level of autism is established on
the basis of the support level needed in the two areas related to the core symptoms of ASD: social
communication and restricted/repetitive behaviors; (2) DQ and IQ have a smaller impact since it
is possible that a patient with good levels of cognitive development has not established adequate
autonomy skills and thus requires a significant support; (3) the ADOS scores express the level of
autism symptoms: it is useful but it cannot be considered alone since patients with few symptoms
could have a significant lack in autonomy.

We used SHAP to compute the global importance assigned by ML models to each feature to measure
how their inner workings come towards or away from the SDE knowledge and experience. Ranks
of the main features are reported in Table 3: while the ADOS score is considered as an important
attribute for classification by the whole set of models, the only one that seems to "agree" with the
SDE on the other features is the neural network, which assigns similar ranks with except to the IQ
feature (but we expected that because DQ_IQ has been generated from the aggregation of DQ and
IQ attributes). The matrix of Euclidean distances between ranks in Figure 1 shows that while the
Random Forest and XGBoost algorithms provide similar ranks, they completely differ from SDE
knowledge.

4 Conclusion & Future Work

In this work, in order to facilitate the research community to diagnose severity levels of ASD
according to DSM-5 criteria, we publicly release a dataset of children affected by the disease. Past
literature and our experimental results highlight the need for collaborative work between ML and
clinical researchers. We observed that quantitative metrics are not always sufficient to choose between
different ML solutions (especially in few-shot scenarios, where we are not able to establish significant
differences between models), and that interpretability-based comparisons — in conjunction with SDE
knowledge and experience — may constitute a valuable support for the decision.
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