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Abstract

All-neural end-to-end (E2E) Spoken Language Understanding (SLU) models can
improve performance over traditional compositional SLU models, but have the
challenge of requiring high-quality training data with both audio and annotations.
In particular they struggle with performance on “golden utterances”, which are
essential for defining and supporting features, but may lack sufficient training
data. In this paper, we compare two data-centric AI methods for improving
performance on golden utterances: improving the annotation quality of existing
training utterances and augmenting the training data with varying amounts of
synthetic data. Our experimental results show improvements with both methods,
and in particular that augmenting with synthetic data is effective in addressing
errors caused by both inconsistent training data annotations as well as lack of
training data. This method leads to improvement in intent recognition error rate
(IRER) on our golden utterance test set by 93% relative to the baseline without
seeing a negative impact on other test metrics.

1 Introduction

Spoken Language Understanding (SLU) models transcribe, classify, and label human utterances
directly from audio input, forming an essential component of digital voice assistants (VAs) such
as Amazon Alexa, Google Assistant, and Apple Siri. All-neural end-to-end (E2E) SLU models
take in audio and output natural language understanding (NLU) classifications [12][2]. E2E SLU
models have a number of advantages over a traditional compositional architecture where the model is
composed of separate Automatic Speech Recognition (ASR) and NLU models. These advantages
include lower latency, a smaller model size, and higher accuracy, as the model is optimized for NLU
and can recover from some ASR errors[13]. However, due to their end-to-end nature, they require
their training data to have audio, transcriptions, and annotations, and as a result often struggle to find
a sufficient amount of high-quality training data. To train a text-only NLU model we might simply
generate additional text inputs, but an E2E model requires that generated data to contain both audio
and annotated text.

In particular, we’ve seen E2E SLU models struggle with high error rates on “golden utterances”.
Golden utterances are manually selected utterances that represent a cross-section of features and
dictate the design of the product and customer experience. They can also be seen as a stand-in for
any small set of high stakes utterances.

The need for large amounts of transcribed and annotated audio data is a known challenge of E2E
systems. While the use of data synthesis and augmentation to improve ML systems more generally
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is widespread in both ASR [8][17][9][14] and NLU [16][15][7][4][3][1], there is limited work on
audio data augmentation in the context of an end-to-end SLU system. Lugosch et al. [10] find that
text-to-speech (TTS) audio can be effectively used to improve an E2E SLU model given a lack of
speakers, while Huang et al. [6] experiment with using TTS to create audio for existing text-only
training data. However these studies focus on the improving model as a whole, and do not address
using synthesized data to target an improvement to specific intents or utterances. They also do not
compare to other data-centric AI approaches for improving E2E SLU models.

In this paper we compare two methods for improving E2E model performance on golden utterances:
improving data quality and increasing data quantity. To improve data quality we apply a set of rules
to standardize golden utterance annotations in our existing training data to a canonical form, while to
increase data quantity we include synthesized audio versions of those golden utterances in the E2E
model’s training data.

2 Data augmentation

Golden utterance representation in our training dataset is limited. Our baseline model is trained
on a dataset composed of de-identified utterances used in a live setting to communicate with a
voice assistant. Out of 802 golden utterances, only 263 (33%) appear in that baseline training data.
Additionally a large portion of goldens that are represented in the training data have very few examples.
To overcome the lack of training data, we augmented our training set with synthetically generated
text-to-speech (TTS) data, matched with our known ground truth annotations. We hypothesized
that adding too much synthesized data might result in a loss in general performance of the model
through overfitting to these specific utterances. To measure the relation between augmentation size
and recognition performance, we trained the model with several tiers of augmentation. We created
synthetic data for each of our golden utterances with 3 sizes: 10, 100 and 1000 samples for each of
the 802 golden utterances, each representing male and female voices from various age groups. Each
individual synthesized utterance represents a unique TTS voice profile, using up to 1000 unique voice
profiles. Our model is targeted at English speakers in the US, and the TTS data likewise reflects that
demographic. We combined the resulting augmented data with our existing training data to create the
final dataset used for training.

3 Standardizing annotations

While analyzing our training data, we found that a large portion of annotations matching golden
utterances were inconsistently annotated, meaning that the transcription matches the golden utterance
but the intent and slot labels applied to the transcription vary. Studies have found that incorrect
training data can cause decreased model performance [11] [5]. Of the 263 golden utterances that
appear in the training data, 215 (81.8%) have some incorrect annotations, and, for 117 (44.5%) of
them, more than half of the available training data does not match the golden ground truth. With
the hypothesis that consistent annotation improves the ability for the model to learn the goldens, we
created a new version of our training dataset where all utterances with transcriptions matching our
golden utterances are standardized to the canonical golden annotation. We compared the model trained
with standardized annotations to the baseline and also experimented with combining standardized
annotations with the augmented data described in Section 2.

4 Model training and evaluation

Our baseline model is trained on a live dataset composed of de-identified human utterances used
to communicate with a voice assistant. The entire dataset consists of 494 intents, comprising
approximately 13k hours of audio. However, our model use-case targets a subset of 59 intents, with
the remainder used for training but considered unsupported and only used for False Accept Rate
(FAR) evaluation. The data used for our experiments is described in Table 1.

The SLU model used for our experimentation is a multi-task model that takes an audio signal as
input and outputs a transcription, an intent label, and slot labels for each word. The ASR layers of
the model take the form of a Recurrent Neural Network-Transducer (RNN-T) model, consisting of
an audio encoder network and a wordpiece prediction network, combined in a joint network that
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Table 1: Data used in each experimental model

Golden Synthetic Total
training utterances synthetic
annotations per golden utterances
Original 0 0
Original 10 8,020
Original 100 80,200
Original 1000 802,000
Standardized 0 0
Standardized 10 8,020
Standardized 100 80,200
Standardized 1000 802,000

outputs a sequence of predicted wordpieces. The interface layers take embeddings from the predicted
wordpieces and the hidden layers from the RNN-T and pass them to the NLU network. Finally the
NLU network consists of an intent tagger based on feed-forward networks and a bidirectional long
short-term memory (BiLSTM) slot tagger. Although they are distinct, the ASR and NLU networks
are jointly trained, which allows the NLU interpretation to make use of, and benefit from, both the
predicted transcription and the hidden layers that are output by the ASR subsystem. This architecture
improves overall performance by providing the NLU subsystem with more information than simply
the ASR 1-best prediction, as would be the case in a traditional compositional architecture. Each of
our models starts with a generic ASR RNN-T model that is pre-trained using over 100k hours of data.
For training purposes, we use the model and datasets described above to fine-tune the ASR layers of
the E2E SLU model alone, then train the NLU layers of the model with ASR layers frozen, followed
by jointly training the entire model on all of the data.

Two test sets were used to evaluate our models. A synthetic dataset was used to evaluate golden
utterance performance, consisting of one example of each of the 802 golden utterances. Due once
again to lack of live data, it was synthesized using a TTS voice from Amazon AWS Polly, a separate
TTS system from the one used to generate augmented training data. In addition, a live de-identified
dataset was used to evaluate model performance on all supported intents. This was used to evaluate
for any potential regression due to overfitting on synthetic golden utterances. This set consists
of approximately 100k utterances (72 hours). For both test sets we evaluated ASR performance
on word error rate (WER), and NLU performance on intent recognition error rate (IRER), which
measures the percentage of utterances that contain any errors, including intent classification, slot
value transcriptions, and slot labeling. In addition, for the live set we looked at false accept rate
(FAR), which measures the percent of unsupported utterances incorrectly recognized as supported.

5 Results and analysis

Adding synthetic training data led to large performance improvements in both WER and IRER on
the golden test set (shown in Table 2). The live set also showed improvements on IRER and FAR,
and modest degradation on WER, even with our highest level of data augmentation. Although the
change in WER looks concerning, the downstream impact on IRER is negligible, so we consider
the tradeoff acceptable. Each level of data augmentation led to an improvement over the previous
one, culminating in the model with the largest augmentation amount having the lowest WER / IRER
metrics across all experiments. Compared to the baseline, the best performing model, with original
annotations and 1000 synthetic utterances per golden, reduced WER by 86.1% relative and IRER by
93.6% relative on the golden test set.

Standardizing existing golden training annotations led to a more moderate improvement on the
golden test set of 15.1% IRER relative to the baseline, while also resulting in a degradation of 4.6%
IRER relative to the live set. The improvements that we did see were primarily restricted to those
goldens that that were well-represented but had errors in the original training data. We believe that
more widespread inconsistencies in data annotation contributed to the degradation on the live set,
demonstrating that a simple targeted fix cannot make up for other deficiencies.
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Table 2: Evaluation relative to baseline with original annotations and no synthetic data

Golden Synthetic data Relative Relative Relative Relative Relative
training per golden Golden Golden Live Live Live
annotations WER (%) IRER (%) WER (%) IRER (%) FAR (%)
Original 10 -31.9% -45.3% +14.9% +4.4% -6.7%
Original 100 -72.9% -85.9% +14.3% -7.8% -9.3%
Original 1000 -86.1% -93.6% +14.5% -7.8% -9.3%
Standardized 0 +1.7% -15.1% +14.4% +4.6% -6.7%
Standardized 10 -32.3% -51.7% +14.7% -5.7% -5.3%
Standardized 100 -69.8% -88.6% +14.9% -5.7% -8.0%
Standardized 1000 -82.7% -93.4% +15.4% -5.7% -6.7%

The data suggest the largest augmented set (1000 added utterances per golden) to be the saturation
point for IRER and WER improvement. We observe accuracy begin to plateau between experiments
using the 100x and 1000x augmented sets, suggesting additional magnitudes of augmentation
(10,000x, 100,000x, etc.) may only facilitate incremental reductions in WER and IRER, while
introducing unnecessary bias towards the golden utterances in our models.

At low levels of data augmentation, annotation standardization and data augmentation complement
each other, with augmentation addressing errors on utterances with little training data while annotation
clean-up addresses errors on utterances with large amounts of incorrect training annotations. However,
while this approach shows overall improvement on un-augmented data, its impact in reducing IRER
is smaller than the impact of training with even the smallest augmented dataset (10 utterances per
golden). With large amounts of augmented data, all extra benefit from the annotation standardization
is eliminated, demonstrating that augmentation alone is capable of addressing those same errors.

Despite targeting NLU improvements, we also saw a positive impact on ASR errors for golden
utterances, with WER decreasing with each level of data augmentation. Models trained on the largest
amount of synthetic data were able to reduce the number of golden utterances with ASR errors by
86.1% relative, a significant impact that we see reflected in our downstream IRER metrics.

6 Conclusion

Our results show that both data-centric approaches to improving E2E SLU achieved the desired effect,
although data augmentation was much more powerful than annotation standardization. Cleaning the
annotated data with one standardized annotation for each golden utterance was limited by the amount
of live training data available, therefore it may not be a surprise that adding synthetic data had a
positive impact on a broader range of utterances. However, it was surprising that data augmentation
in fact superceded data cleaning, and thus combining both techniques turned out to be unnecessary.
With even 100 synthetic utterances per golden, the benefit of standardizing the existing training data’s
annotations disappears. This suggests that, at least for scarce data cases such as golden utterances, it
may be preferable to simply overwhelm any annotation inconsistency with new examples that adhere
to the proper annotation conventions.

Results from our evaluation show that greater amounts of synthetic data significantly improve intent
recognition for these target utterances without degrading overall model performance. Even adding
only 10 synthetic examples per golden has a big impact on utterances that are absent from the
live training data, and each of our discrete synthetic data increments improves performance further.
Results from our live data evaluations show that IRER and FAR remain stable even with the large
amounts of augmented data added to the training data. While there is an increase in WER across
experiments, this co-occurs with stable IRER metrics, which suggests that these speech recognition
errors are not negatively affecting the correct recognition of intents and slot labels. Going forward we
plan to expand our data augmentation to support and improve a wider range of use cases.
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