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Abstract

For supporting data-centric analyzes, it is important to identify and characterize
which observations from a dataset are hard or easy to classify. This paper employs
meta-learning strategies to describe the main differences between observations
which are easy and hard to classify in a dataset. Intervals on significant meta-
features values assessing the hardness levels of the observations are extracted and
contrasted. This meta-knowledge allows for characterizing the hardness profile
of a dataset and obtaining insights into the main sources of difficulty they pose,
as shown in experiments using two super-classes of the CIFAR-100 dataset with
different hardness levels.

1 Introduction

Knowing which observations in a dataset are hard to classify is a valuable tool for supporting data-
centric analysis. These observations are usually worth a closer inspection for identifying potential
data quality issues. They can also pinpoint a classification model’s weaknesses, which can then be
further explored. But what makes an instance hard to classify? There are multiple possible sources of
difficulty in a classification problem (Lorena et al.l 2019), such as class overlapping, feature and label
noise, data sparsity, among others. For instance, one might expect observations in overlapping areas
of the classes to be misclassified more often than observations placed in dense regions of instances
sharing their label. [Smith et al.| (2014) define as hard an observation which gets systematically
misclassified, regardless of the learning model employed in its analysis. They introduce an instance
hardness (IH) measure which averages the probably of misclassification of an instance by a diverse
pool of learning algorithms. In addition, they present a set of hardness measures (HM) intended to
explain possible reasons as to why an instance is hard to classify.

Here we take advantage of such measures to perform a meta-analysis of a classification dataset with
the intention of characterizing and describing its hardness profile. For such, a meta-dataset is first
built where each observation is described by a set of HMs and is labeled according to a binarized
IH value indicating if it is easy or hard to classify. Next, intervals contrasting the meta-features’
values assumed by these subsets of observations are extracted. A methodology originally proposed to
extract the domains of competence of classifiers based on datasets meta-characteristics from (Luengo
and Herrera, |2013)) is adapted for extracting such intervals. Joining these intervals allows us to build
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descriptive rules that characterize the profile of easy and hard instances from a dataset. Experiments
with two super-classes of the CIFAR-100 image classification problem with different hardness levels
evidence the utility of our methodology in identifying the hardness profile of a dataset and what are
the main reasons for an instance being considered as hard.

2 Methodology

Meta-dataset Generation. The first step of the methodology involves describing the original
dataset under analysis D by a set of HM, composing a meta-dataset M. For this we used the PyHar
package. The meta-features used are summarized in Table|l] with name, acronym, minimum and
maximum values achievable and the reference where they are defined. All measures were standardized
so that higher values are indicative of a higher hardness level concerning the aspects they quantify.

Table 1: Hardness measures employed as meta-features in this work.

Measure Acron. Min Max Reference
k-Disagreeing Neighbors kDN 0 1 (Smith et al[[2014)
Disjunct Class Percentage DCP 0 1 (Smith et al.,|2014)
Tree Depth (pruned) TDp 0 1 (Smith et al.| 2014)
Tree Depth (unpruned) TDy 0 1 (Smith et al.,|2014)
Class Likelihood CL 0 1 (Smith et al.,[2014)
Frac. features in overlapping areas F1 0 1 (Arruda et al.} 2020)
Frac. nearby instances of different class N1 0 1 (Arruda et al.} 2020)
Ratio of intra-extra class distances N2 0 ~1 (Arruda et al., [2020)
Local set cardinality LSC 0 1 (Arruda et al., 2020)
Local set radius LSR 0 1 (Arruda et al.| 2020)
Usefulness U ~0 1 (Arruda et al .| 2020)
Harmfulness H 0 ~ 1 (Arruda et al.| 2020)

Next the observations in D must be labeled as either hard or easy. For such, we must compute their
TH estimate. Given a classification dataset D with n pairs (x;, y;), where x; is an observation and y;
is its class label, the IH of x; is given by Equationﬂ] (Smith et al.| [2014):

| Al
1
TH(x;,y:) =1 - A > p(vilxi 1), )
j=1

where p(c;|x;,1;) gives the probability a learning model /; from a pool of models A induced from D
assigns x; to its expected class y;. According to this formulation, observations that are frequently
misclassified have a large IH value and are considered hard, whilst easy instances are likely to be
correctly classified by any of the algorithms in .A. For composing the set .4 in this work, we employed
seven classification models with different biases: Bagging (Bag), Gradient Boosting (GB), Support
Vector Machines (SVM, with both linear and RBF kernels), Multilayer Perceptron (MLP), Logistic
Regression (LR) and Random Forest (RF). The meta-dataset is labeled applying a threshold on the
IH values. Herewith, observations with an IH value above a threshold (here set as 0.4) are labeled as
hard. Otherwise, they are labeled as easy.

PyHard also includes a meta-feature selection step to keep in M only the meta-features which relate
the most to the classification performance of the classifiers in the pool 4. Using a mutual information
score, ordered lists of meta-features that best relate to the outputs of each of the classifiers in A are
generated. These ranks are next aggregated and the 10 top-ranked meta-features are kept.

Automatic Extraction Method. Given the meta-dataset M, our objective is to extract intervals
of meta-feature values which characterize the profile of the easy and hard subsets of instances of
the original base dataset D. We adapt the descriptive method introduced in |[Luengo and Herrera
(2013)) for characterizing the domains of competence of different classifiers for such. There, given
a classification technique and a pool of classification datasets described by meta-features assessing
their complexity, they extract intervals of meta-feature values which better describe the predictive
performance (binarized as good or bad) achieved for the datasets. Here, given a classification dataset
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whose observations are described by a set of hardness measures and a pool of classifiers with distinct
biases, the intent is to extract similar intervals but related to the hardness level of the dataset’s
observations (binarized as easy or hard). This Automatic Extraction Method (AEM) first goes through
each HM meta-feature and uses them to sort the observations in ascending hardness level according
to that meta-features’ values. Once sorted, the AEM finds continuous intervals containing either only
easy or hard instances.

AEM has two main hyperparameters, percent_merge and percent_drop. Consecutive intervals of easy
(hard) instances with gaps smaller than percent_merge xn are merged, where n is the size of the
dataset, as small gaps between almost contiguous intervals may be anomalies or insignificant and
can be disregarded. After this, intervals containing less than percent_drop Xmjuss, Where ngjass 1S
the size of the easy or hard class, are considered non representative and are dropped. To tune these
hyperparameters we perform a grid search on validation sets separated from M. percent_merge is
varied from 0 to 0.01 with a step of 0.002 and percent_drop is varied from O to 0.25 with a step of
0.05. The hyperparameter values that result in the best weighted F1 score when the resulting intervals
are used to classify the observations of the validation meta-dataset as easy or hard are chosen. Finally,
we extract the intervals with the tuned hyperparameters. For each meta-feature we keep only the easy
and the hard intervals with the largest support, that is, the easy/hard intervals that cover the greatest
amount of instances, therefore being the most representative of easy/hard behavior. Compiling the
meta-features with easy and hard intervals, the interval values and the interval support, we obtain a
table that we can use as a ruleset describing easy or hard behavior.

The proposed methodology is implemented in Python and can be found in the Instance Hardness
Automatic Extraction Method (IH-AEM) repository (Moreno, [2021).

3 Experiments

We present here case studies employing the proposed approach, using two different superclasses of
the CIFAR-100 dataset (Krizhevskyl [2009). It has 100 classes that are grouped into 20 superclasses.
Here we take the training sets of two of such superclasses, one with a high hardness level (people)
and other with an easy profile (vehicles_2). These images were first supplied to an Inception network
(Szegedy et al,2016)) pre-trained on the ImageNet dataset (Deng et al.,[2009). The activation levels
of the penultimate layer of the network are used as a feature vector. Meta-datasets are then produced
using the resulting structured datasets.

Each meta-dataset was split into train and validation sets. The validation sets were 30% the size
of the original sets. The experiments were all run on a laptop with an 2.40 GHz Intel 175500U
processor using 8 GB of RAM, running Ubuntu version 20.04. The time it took run each step of the
methodology is as follows: 200.2 minutes to generate the meta-dataset for the people dataset and
333.6 minutes for the vehicles_2 dataset; 12.3 minutes to tune the AEM hyperparameters for the
people dataset and 12.25 minutes for the vehicles_2 dataset; and finally 36.2 seconds to extract the
rules for the people dataset and 36.7 seconds for the vehicles_2 dataset.

People superclass. The people dataset has the following classes: baby, boy, girl, man, and woman.
It has a hard profile and 81.2% of the dataset is composed of hard instances. Table 2] shows part of
the intervals extracted for this dataset. In particular, only measures with defined intervals for both
easy and hard classes are shown. The complete set of intervals is presented in the Supplementary
material. Support values are higher for hard intervals, because most of the dataset is labeled as hard.
Contrasting intervals, we can notice higher lower and upper bounds for the hard intervals, as expected.
In particular, hard instances have a lower likelihood of belonging to their classes (as measured by
CL), are surrounded by 20% to 100% of observations from another class (measured by kDN) and
have a lower intra-class to extra-class distance ratio (N2). Other measures (LSC and Usefulness)
are based on the distance of each observation to their nearest enemies, which corresponds to their
nearest neighbor of another class, so that hard observations tend to be closer to these points. These
results point that hard observations might be either borderline or noisy. But easy observations from
this dataset have average to high values for most of the HMs and are not so easy. Figure | presents
some examples of observations considered easy (top) and hard (bottom) by category of the people
dataset. Most of the hard-to-classify observations are indeed borderline or poorly labeled, such as the
cases of baby, boy and girl. Others are out of focus (woman) or pose (man).



Table 2: Part of the meta-feature intervals of easy and hard behavior of the people dataset

Easy Hard
Meta-feat.  Interval Support  Interval Support
CL [0.47,0.47] 0.06 [0.51, 0.91] 0.63
LSC [0.94, 0.99] 0.06 [0.99, 1.0] 0.59
N2 [0.45, 0.47] 0.05 [0.49, 1.0] 0.81
Usefulness  [0.92, 0.99] 0.07 [0.99, 1.0] 0.77
kDN [0.0, 0.2] 0.06 [0.2, 1.0] 0.84
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Figure 1: Easy and hard images for each label from the CIFAR-100 People Superclass dataset.

Vehicles_2 Superclass. The vehicles_2 dataset has an easy profile, with 87.9% of the dataset
labeled as easy. Therefore, higher support values are verified here for the easy intervals, which
are also more numerous. Part of the rules are shown in Table [3] (the complete table is within the
Supplementary material). In general the meta-features values are much lower in the easy class than
in the hard counterpart, evidencing they are really easy. Hard instances have a lower likelihood
of belonging to their classes (CL), and are surrounded by neighbors of a different class (kDN and
LSC). This indicates they may be similar to observations from other classes. Some representatives
of the easy and hard classes per category of the vehicles_2 dataset are shown in Figure 2] from the
Supplementary material. Hard representatives are out of focus or atypical.

Table 3: Part of the meta-feature intervals of easy and hard behavior of the vehicles_2 dataset

Easy Hard
Meta-feature  Interval Support  Interval Support
CL [0.19, 0.19] 0.14 [0.96, 0.96] 0.01
LSC [0.48, 0.95] 0.41 [1.0, 1.0] 0.01
kDN [0.0, 0.0] 0.23 [1.0, 1.0] 0.01

4 Conclusion

This short paper presents a meta-learning (MtL) methodology used to characterize the profile of
observations easy and hard to classify in a dataset. The results prove the usefulness of such a
descriptive approach to better understand the hardness profile of a dataset. A limitation of our work
is that when regarding hardness, we frequently work with very unbalanced classes. Many datasets
have either a greater amount of easy instances or a greater amount of hard instances. This hampers
the extraction of representative intervals for the underrepresented group. Future work shall consider
other meta-features and hardness levels beyond an easy/hard dichotomy.
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A Supplementary Material

This section presents the supplementary material of this work. Table ] presents the complete set of
intervals describing the easy and hard observations of the people dataset. Table 5| presents the same
information for the vehicles_2 dataset. Figure 2] presents examples of easy and hard instances from
the vehicles_2 dataset, per category of this classification problem.

Table 4: CIFAR-100 People Superclass dataset meta-feature intervals of easy and hard behavior

Easy Hard
Meta-feat. Interval Support  Interval Support
CL [0.47, 0.47] 0.06 [0.51,0.91] 0.63
Fl1 - - [0.96, 0.97] 0.23
Harmfulness - - [0.0, 0.05] 1.00
LSC [0.94, 0.99] 0.06 [0.99, 1.0] 0.59
LSR - - [0.39, 0.51] 0.44
N2 [0.45, 0.47] 0.05 [0.49, 1.0] 0.81
TD_P - - [0.6, 0.8] 0.74
TD_U - - [0.38, 0.88] 0.88
Usefulness [0.92, 0.99] 0.07 [0.99, 1.0] 0.77
kDN [0.0,0.2] 0.06 [0.2,1.0] 0.84
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Table 5: CIFAR-100 Vehicles_2 Superclass dataset meta-feature intervals of easy and hard behavior

Easy Hard
Meta-feature  Interval Support  Interval Support
CL [0.11,0.12] 0.08 [0.96, 0.96] 0.01
DCP [0.037,0.084] 0.21 - -
Fl1 [0.97, 0.97] 0.05 - -
Harmfulness  [0.0, 0.0] 0.07 - -
LSC [0.48, 0.95] 0.41 - -
N1 [0.0, 0.33] 0.07 [1.0, 1.0] 0.01
N2 [0.39, 0.44] 0.18 - -
Usefulness [0.39, 0.89] 0.28 - -
kDN [0.0, 0.0] 0.25 [1.0, 1.0] 0.01
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Figure 2: Easy and hard images for each label from the CIFAR-100 Vehicles_2 Superclass dataset.
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