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Abstract

Graph neural networks (GNN5s) have attracted much attention due to their ability to
leverage the intrinsic geometries of the underlying data. Although many different
types of GNN models have been developed, with many benchmarking procedures
to demonstrate the superiority of one GNN model over the others, there is a lack
of systematic understanding of the underlying benchmarking datasets, and what
aspects of the model are being tested. Here, we provide a principled approach to
taxonomize graph benchmarking datasets by carefully designing a collection of
graph perturbations to probe the essential data characteristics that GNN models
leverage to perform predictions. Our data-driven taxonomization of graph datasets
provides a new understanding of critical dataset characteristics that will enable
better model evaluation and the development of more specialized GNN models.

1 Introduction

Machine learning for graph-structured data has seen rapid development in recent years [10]. Originally
inspired by convolutional neural networks, which are very successful in regular Euclidean domains
thanks to their ability to leverage data-intrinsic geometries, classical graph neural network (GNN)
models [6, 12, 21] translate those principles to graph domains. Further advancements in the field led
to a wide selection of complex and powerful GNN architectures. Some models are provably more
expressive than others [24, 15], can leverage multi-resolution views of graphs [13], or can account
for implicit symmetries of the graph data [3]; comprehensive surveys of graph neural networks can
be found in [4, 23, 27]. However these GNN methods are historically evaluated on a set of small
datasets [14] that became insufficient to serve as distinguishing benchmarks [8]. Therefore, recent
work has focused on compiling a set of large(r) benchmarking datasets across diverse graph domains
[8, 11]. Despite these efforts and the introduction of new datasets, it is still not well-understood,
for example, whether node features or (sub)graph structural patterns are more influential, or how
important long-range interactions are. Hence it is not clear what aspects of GNNs’ representation
capabilities are tested by a given benchmark. Here, we explore graph data characteristics in relation
to the prediction tasks and establish the first taxonomic view of GNN benchmarking datasets. These
insights improve our understanding of empirical evaluations of GNNs and will lead to appropriate
empirical validation of future models.

2 Methods

Information in graph data is typically encoded in two ways: (i) node features that represent the
properties at individual nodes of the graph, and (ii) graph structure that represents relations between
nodes. Leveraging symmetries and other geometric priors in graph data is crucial for generalizable
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Figure 1: Graph structure perturbations. An illustrative example from ENZYMES dataset.

learning [3]. While invariance (i.e., symmetry) or equivariance to some transformations is inherent,
invariance to others may be only empirical or partial. Here we use this lens of empirical transfor-
mation sensitivity to gauge how task-related information is encoded in graph datasets. We perturb
graph datasets with a set of transformations designed to eliminate or emphasize particular types of
information embedded in the graphs. As a proxy to how invariant or sensitive a given prediction
task is to these graph perturbations, we observe the empirical change in GNN performance on such
perturbed versions of the datasets compared to the originals. For a given dataset and its prediction
task, the empirical sensitivity profile to the set of perturbations represents a comprehensive view of
what information is important and needs to be captured by a GNN model. Based on these sensitivity
profiles, we cluster the analyzed datasets and propose a taxonomy.

First, we utilize two types of node perturbations: node features are either discarded or they are
replaced by one-hot encodings of node degrees; we refer to these perturbations as no-node-features
and node-degree, respectively. Secondly, we design a set perturbations acting on graph structure
(Fig. 1). Perturbations that remove all edges (no-edges) or make the graph fully-connected eliminate
structural information and essentially turn the graph into a set, causing the nodes to be either
processed fully independently, or collectively. Next, to inspect the importance of local vs. global
graph structure, we design the fragmented perturbation, which partitions the graph into connected
components consisting of nodes whose distance to the seed node is less than k. A smaller k implies
smaller components, and hence discards the global structure and long-range interactions.

With these perturbations, we comprehensively profile a selection of widely used graph-level classifi-
cation datasets (Fig. 2) that cover the benchmarking dataset collection of Dwivedi et al. [8], and a
wide range of node-level classification datasets (Fig. 3) accessed via the PyG package [9].

3 Results

To obtain the perturbation sensitivity profiles, we consider four popular GNN models: GCN [12],
GAT [21], GIN [24], and ChebNet [6]. We keep the model hyperparameters identical for each dataset
and perturbation combination: 2-layer MLP for node embedding (only for node-level tasks), 5 graph
convolutional layers with residual connections and batch normalization, followed by global mean
pooling (for graph-level prediction tasks), and finally a 2-layer MLP classifier. The classification per-
formance is evaluated in terms of AUROC by averaging over either 10-fold stratified cross-validation
(for datasets without a standard training/validation/test split); or averaged over 10 repetitions with
different random initializations using the standard splits.

3.1 Graph-level prediction tasks

We identify a categorization into four dataset clusters based on hierarchical clustering of their pertur-
bation sensitivity profiles. We refer to these graph-level task clusters as GT-1 to GT-4, respectively.
This categorization is stable across the four GNN models with only minor deviations. Here we include
CLUSTER and PATTERN datasets, that are in fact node classification datasets, but their inductive
learning setup makes them more akin to graph-level tasks than to transductive node-level tasks.

Grouped in GT-3, the image-derived datasets CIFAR10 and MNIST [8] share very similar sensitivity
profiles, showing that the color of underlying superpixels (node features) is the dominant information,
while the graph structure is irrelevant. Interestingly, however, early global symmetry (fully-connected)
appears to lead to detrimental (over-)smoothing for GCN and GIN, while GAT and ChebNet are
robust to this perturbation.
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Figure 2: Taxonomy of inductive graph learning datasets via graph perturbations. For each
GNN model (a—d), dataset, and perturbation combination, we show the model’s performance relative
to its performance on the unmodified dataset. The categorization into 4 dataset clusters is stable
across various GNN models with only minor deviation.

CLUSTER and PATTERN [8], generated from a stochastic block model, as well as the actor/actress
ego-network dataset IMDB-BINARY [25], are greatly affected by elimination of local graph structure.
In the latter two, which compose GT-2, the node features bear no importance: using the node degrees
instead improves the performance in IMDB-BINARY by 20%, possibly by enhancing structural
information that the prediction task depends on. The profile of CLUSTER differs from the other two
in that it shows reliance on both types of information; in fact, in this dataset, the node features encode
class information of a few key nodes, while maintaining graph structure is essential for correct cluster
prediction of the unlabelled nodes. Note that original AUROC is retained for fragmented k = {2, 3},
as due to the dense nature of the graph 2-hop neighborhoods for each node recover the original graph.

Finally, the (bio)molecular datasets NCI1 [22], D&D [7], PROTEINS, and ENZYMES [2] are
grouped into the cluster GT-4. D&D and PROTEINS show limited or no reliance on graph structure,
as opposed to NCI1 and ENZYMES. Interestingly, even though PROTEINS and ENZYMES contain
similar protein structure graphs, their different prediction tasks lead to notably different perturbation
sensitivities; this illustrates the task dependency of the optimal graph representations.

3.2 Node-level prediction tasks

For node-level prediction tasks we restrict our experiments to a GCN model as our experiments for
the graph-level tasks suggest the GNN model of choice does not have a profound impact on the
resulting taxonomy. We identify four groups of node-level datasets. First, NT-1 and NT-3 contain
all the datasets from Twitch [18], WebKB [5], and Actor [17]. Both groups, particularly NT-1,
benefit from removing all edges, indicating the richness of the constructed node features for the
corresponding tasks without needing additional structural information. WebKB aims to classify web
pages into, e.g., student or staff. One may imagine the web page descriptions (node features) are
informative for distinguishing student and staff pages since, for example, the word “Ph.D.” is more
likely to appear on a student page. Meanwhile, it is less likely that student pages link between each
other (edges), as suggested by the heterophile nature of the WebKB networks [16]. Notice the NT-3
datasets also benefit from removing node features instead of removing edges, as opposed to NT-1.
This difference indicates the Twitch datasets in NT-3 contain node features and structural information
that are individually useful for the prediction tasks, but collectively work against each other.
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Figure 3: Taxonomy of transductive node-level prediction datasets. Categorization into 4 dataset
groups (NT-1 to NT-4) is based on clustering of sensitivity profiles w.r.t. a GCN-based model.

NT-2 contains a broad spectrum of datasets from citation networks to social networks and web pages,
which are relatively insensitive to any graph perturbation. This implies that both the node features and
the structural information are useful for the tasks; and unlike NT-3, the two sources of information are
consistent with each other. This also accounts for the relatively high AUROC scores of NT-2 datasets
(averaging 0.956) compared to NT-3 (averaging 0.740). As an example, Amazon [20] aims to classify
the categories of products (nodes) given their co-purchasing relationships (edges) and the product
descriptions (node features). One may expect that both sources of information are insightful for this
classification task. Notice the citation networks (CF [1]) and the streaming service social networks
(DzEu, LFMA [19]) are slightly more dependent on the node features, indicating the node features
are somewhat more informative. Finally, NT-4 datasets are dominantly reliant on the structural
information, with Flickr [26] being particularly dependent on long-range interactions, as suggested
by the same performance drop caused by the edge removal and all fragmented perturbations.

4 Conclusion

We provide a principled approach for the taxonomization of graph datasets based on their type
of prediction task signal, rather than application domain. We studied inductive and transductive
classification tasks without edge features or global graph properties; for future work we plan to
extend our analysis to a wider range of graph tasks, datasets, and GNN models. Our taxonomy is
determined by the set of perturbations and the expressive power of the GNN models used. Combining
a wider range of these views will lead to a more complete taxonomy, potentially leading to a better
understanding of the modeling capabilities of GNNs as well as providing valuable insights required
to improve upon existing models.
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